Recombination and chimeragenesis by in vitro heteroduplex formation and in vivo repair.

نویسندگان

  • A A Volkov
  • Z Shao
  • F H Arnold
چکیده

We describe a simple method for creating libraries of chimeric DNA sequences derived from homologous parental sequences. A heteroduplex formed in vitro is used to transform bacterial cells where repair of regions of non-identity in the heteroduplex creates a library of new, recombined sequences composed of elements from each parent. Heteroduplex recombination provides a convenient addition to existing DNA recombination methods ('DNA shuffling') and should be particularly useful for recombining large genes or entire operons. This method can be used to create libraries of chimeric polynucleotides and proteins for directed evolution to improve their properties or to study structure-function relationships. We also describe a simple test system for evaluating the performance of DNA recombination methods in which recombination of genes encoding truncated green fluorescent protein (GFP) reconstructs the full-length gene and restores its characteristic fluorescence. Comprising seven truncated GFP constructs, this system can be used to evaluate the efficiency of recombination between mismatches separated by as few as 24 bp and as many as 463 bp. The optimized heteroduplex recombination protocol is quite efficient, generating nearly 30% fluorescent colonies for recombination between two genes containing stop codons 463 bp apart (compared to a theoretical limit of 50%).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human DNA Helicase B Functions in Cellular Homologous Recombination and Stimulates Rad51-Mediated 5′-3′ Heteroduplex Extension In Vitro

Homologous recombination is involved in the repair of DNA damage and collapsed replication fork, and is critical for the maintenance of genomic stability. Its process involves a network of proteins with different enzymatic activities. Human DNA helicase B (HDHB) is a robust 5'-3' DNA helicase which accumulates on chromatin in cells exposed to DNA damage. HDHB facilitates cellular recovery from ...

متن کامل

Highly mismatched molecules resembling recombination intermediates efficiently transform mismatch repair proficient Escherichia coli.

The ability of related DNAs to undergo recombination decreases with increased sequence divergence. Mismatch repair has been proposed to be a key factor in preventing homeologous recombination; however, the contribution of mismatch repair is not universal. Although mismatch repair has been proposed to act by preventing strand exchange and/or inactivating multiply mismatched heteroduplexes, there...

متن کامل

Formation of heteroduplex DNA promoted by the combined activities of Escherichia coli recA and recBCD proteins.

We have established an in vitro reaction in which heteroduplex DNA formation is dependent on the concerted actions of recA and recBCD proteins, the major components of the recBCD pathway of genetic recombination in vivo. We find that heteroduplex DNA formation requires three distinct enzymatic functions: first, the helicase activity of recBCD enzyme initiates heteroduplex DNA formation by unwin...

متن کامل

Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae.

The yeast Saccharomyces cerevisiae encodes a set of genes that show strong amino acid sequence similarity to MutS and MutL, proteins required for mismatch repair in Escherichia coli. We examined the role of MSH2 and PMS1, yeast homologs of mutS and mutL, respectively, in the repair of base pair mismatches formed during meiotic recombination. By using specifically marked HIS4 and ARG4 alleles, w...

متن کامل

Physical Analyses of E. coli Heteroduplex Recombination Products In Vivo: On the Prevalence of 5′ and 3′ Patches

BACKGROUND Homologous recombination in Escherichia coli creates patches (non-crossovers) or splices (half crossovers), each of which may have associated heteroduplex DNA. Heteroduplex patches have recombinant DNA in one strand of the duplex, with parental flanking markers. Which DNA strand is exchanged in heteroduplex patches reflects the molecular mechanism of recombination. Several models for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 27 18  شماره 

صفحات  -

تاریخ انتشار 1999